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Recent experiments on phase separation and criticality in ionic fluids are 
reviewed briefly. The data suggest a sharp distinction between solvophobic 
criticalio,, displayed by nonionic fluids and some electrolytes, that is associated 
with Ising-like exponents, //---0.325, )' = 1.239, and v ~-0.631, and Coulombic 
{or ionic) criticality characterized by classical, van der Waals exponents, fl = 0.5, 
),= 1, and v = 0.5. Only experiments on the sodium-ammonia system seem to 
straddle this dichotomy: they show crossover from classical to lsing behavior 
close to T,. at a characteristic crossover scale t x = I T x -  T,I/T,. A range of 
theoretical issues thus raised is discussed, including other conceivable options 
(spherical model, tricriticality, etc.). Attention is drawn to Nabutovskii's work 
and various scenarios are illustrated with the aid of schematic phase diagrams 
containing multicritical points that could, in principle, separate two distinct 
universality classes of electrolyte criticality. The advantages of examining a basic 
four-state lattice model that allows for ionic association--dissociation, etc., are 
reviewed. The issue of the existence, location, and nature of the long-heralded 
but still elusive gas-liquid transition and critical point in the continuum restricted 
primitive model (hard spheres carrying charges +q  and - q )  is taken up in 
further detail. Earlier theoretical work and recent Monte Carlo simulations are 
summarized. In an effort to obtain a physically transparent, semiquantitative 
description, the work of Debye and Hiickel and its subsequent elaboration via 
Bjerrum's concept of bound ion pairs is revisited and seen to predict phase 
separation and criticality. Recent work by Levin and the author is described 
which repairs serious defects of the earlier theories by including the interaction 
of the ion-pair dipoles with the screening ionic fluid, following Debye-Htickel 
methods. The resulting mean field theory agrees quite well with the simulations 
and appears to embody the most crucial physical effects. However, the role of 
critical fluctuations, the related interplay of the charge and density correlation 
functions, the likelihood of Ising-like behavior, and the associated crossover 
scale t~ remain important unsettled questions. An Appendix presents a critique 
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of arguments by Stell to the effect that the restricted primitive model should 
display Ising behavior and that 1/r 4 effective interactions might be significant. 
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I. I O N I C  CRITICALITY, THE CHALLENGE 

Many ionic fluids or electrolytes, both single-component systems, like 
molten NaC1, and solutions of salts dissolved in aqueous or organic solvents 
undergo phase separation and, subsequently, as the temperature is raised, 
exhibit gas-liquid or liquid-liquid critical points, which can be described by 
a coexistence curve 

zlx ~ zip - p.q - p~ ,  --, Id a ( 1 ) 

when t-(T-T,.)/T,.~O-, where x is, say, mole fract ion or volume 
fract ion and p is the number  density of  the solute/salt or pure electrolyte; 
by a susceptibility/compressibility/zero-angle-scattering intensity diverging 
as 

X T ~ K T ~ S ( O )  ~, 1/Itl ~', t--+0 (2) 

and by a correlation length for the density-density fluctuations varying as 

r  as t - , 0 +  (3) 

In the case of nonionic fluids the analogous critical points are well 
established, both theoretically and experimentally, to be of Ising-like 
character (lsg) with 

/~ ~ 0.32s, ? ~ 1.24, v "" 0.63 (4) 

By contrast, however, ionic fluids, which, of course, entail long-range 
Coulombic interactions, typically appear, at least on first study, to exhibit 
classical or van der Waals behavior (CI). In particular, their coexistence 
curves are often well described by /~= 1/2. Notable examples are the 
metal-ammonia systems (see ref. 1). This raises intriguing fundamental 
theoretical questions: Q.I: Can ionic fluids exhibit true asymptotic non- 
lsing-like criticality? Q.2a: If so, what are the characteristics of such ionic 
criticality (Ion)? Q.2b: If not, why do so many ionic fluids appear to display 
classical criticality? 

These issues are of renewed interest since Singh and Pitzer ~2~ dis- 
covered in 1988 that the organic salt triethyl-n-hexylammonium triethyl-n- 
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hexylboride [(C2H5) 3 (C6H|3) N+(C2Hs)3 (C6H13) B - ]  in diphenyl ether 
[-(C6H5) 20] exhibits criticality at 7",. = 317 K and is susceptible to precise 
observations down to temperature intervals of [tl ~ 10-45: the coexistence 
curve data strongly indicate/3 = 0.476, markedly close to fl = 1/2. ~31 On the 
other hand, Japas and Levelt Sengers c4~ studied solutions in water of 
tetra-n-pentylammonium bromide [(C5 H I~ )4N § Br-  ], which has a similar, 
rather large organic cation but a smaller anion. Down to Itl ~ 10 -4 they 
found excellent fits to the coexistence curve with fl=0.319-0.337 close 
to fllsg. A strong dichotomy is evident! 

Further aspects of the experimental background have been well 
reviewed by Pitzer in 1990, ~5~ Japas and Levelt Sengers in 1991,141 
and, most recently, by Levelt Sengers and Given) 6~ What can be said 
theoretically? 

2. T H E  I S I N G - L I K E  O P T I O N  A N D  C R O S S O V E R  

A very natural answer to Q.1 is "No" so that lon~Isg.  That has, 
indeed, been argued by SteU and co-workers 17 9~; but, to this author at 
least, the discussions, while plausible, are not very convincing and actually 
appear somewhat circular. (An informal critique of ref. 9 is appended to 
this article.) Thus Pitzer's view ~51 that the current situation is "incon- 
clusive" seems fair. Certainly, Q.2b has not been adequately addressed: If 
Ising-like behavior is controlling, why is it not always seen? 

That question can be sharpened by examining what at present seem to 
be the only experiments straddling the classical-nonclassical coexistence- 
curve dichotomy for ionic systems: those are the 1969-1970 observations of 
Chieux and Sienko cll on the sodium-ammonia system (Na +NH3).  They 
saw an effective exponent (i.e., a local slope on a log-log plot of Ax vs. [tl) 
of value fl~n~ 1/2 in the range Itl =0.1 down to 0.01; nevertheless, on 
approaching closer to T,., the log-log plot turned downward and indicated 
flerr" 0.33, tt~ so suggesting true asymptotic behavior of Ising character. 

To describe such a crossover one can appeal to renormalization-group 
(RG) theory, which, first, recognizes the so-called corrections to scaling 
and, second, allows for distinct (RG) fixed points with, in general, different 
exponents and differing degrees of relative stability. To allow for the 
singular correction terms one often writes (see, e.g., refs. 3-5) 

z lx~  B Itl ~ (1 +bo [tl~ [tl'-~ "") (5) 

where 0 is the leading correction-to-scaling exponent, which, for lsing-like 
systems, has a value 020 .54  (see, e.g., ref. 10) that is frequently 
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approx imated  by 0 = 1/2. Physically, however, it is more informative to 
normalize the correction factor by writing it in the form, say, 

...] (6) 

where the factor 1/4 is chosen for practical convenience: then t• represents 
the crossover scale (or relative temperature deviation at which significant 
changes in the effective exponent are seen). 

If one now assumes that the true asymptotic exponent in (5) is fl = fl~sg, 
then the Sienko-Chieux data ~t~ may be described by t• = 0 . 6 x 1 0  -2. 
More recently, Chieux et al. tl~) have performed scattering experiments on 
Na +ND3 above and below T,.. They observe quite parallel crossovers 
from the near-classical values ), = 1.0 and v "-, 1/2 to y "-" 1.24 and v = 0.63 
with essentially the same value of t• 

Now the Singh-Pitzer data 12~ give essentially no hint of an Ising value 
for 8. If, nonetheless, one insists on using (5) with f l=f l t sg  (and so also 
adjusts the necessarily fitted value of T,.), one finds t• -~ 1.0 x 10 -4 and 
Bz ~ -0.013 (rewriting the fits presented by Pitzer~3'5~). If this is, indeed, 
to be the proper theoretical interpretation of these experiments it is clearly 
mandatory that some reasonable explanation be provided for such a small 
value of t• However, the crossover behavior seen in the sodium-ammonia 
system certainly points to the correctness of the Ising-like option. 

3. N O N - I S I N G - L I K E  O P T I O N S  

What about opposing answers such as Ion = CI or Ion = Other? Of 
course, many approximate closed-form theories, from van der Waals 
onward, yield the classical exponents, f l= l /2 ,  y =  1/2, and v = l / 2 .  
A favorite theory of this type for electrolytes is the mean spherical 
approximation (MSA): see, e.g., ref. 12. But, clearly, such theories must be 
discounted in assessing the universality class of the criticality. 

Recently Kholodenko and Beyerlein claimed, c~3~ on the basis of earlier 
work, ~j41 that simple ionic models, in particular the fundamental res tr ic ted 
primi t ive  model  (or "RPM") having hard spheres of diameter a with 
charges +q, should be described by the Kac-Berlin spherical model and 
hence have coexistence curves truly exhibiting /~= 1/2. However, the 
analysis in ref. 14 has been severely criticized and it was shown that the 
claim 113~ is without any theoretical foundation. ~5~ Beyond that, one can 
argue on rather general grounds 115~ that spherical-model criticality is a 
poor candidate for ionic criticality (confining attention here and below to 
d =  3 dimensions): in particular, it is associated with the divergence of the 
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compressibility below T,. as the coexistence curve is approached from either 
side--something that is never observed in fluids! 

Irrespective of theory, however, the issue was soon settled experimen- 
tally. The spherical model (for d =  3) predicts ), = 2, much larger than both 
classical and Ising values. But that was ruled out both by Weing/irtner 
et al. (16) and Zhang, Briggs, Gammon, and Levelt Sengers. (17) Indeed, for the 
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Fig. 1. Typical appearance of a tricritical point, at (TI, i, x,n), and its vicinity in the plane of 
symmetry for d =  3 dimensions. (~9) In the case of helium three-four mixtures, x would denote 
the mole fraction.of 3He and the "ordered" phase is a superfluid; for common magnetic 
materials, the ordered phase is an easy-axis antiferromagnet, the disordered phase is 
paramagnetic, and - x  corresponds to the magnetization induced by a field parallel to the 
easy axis. The coexistence curve is well described by d x ~  ITt~ i -  TI ~ with f l=  1 (since the 
anticipated logarithmic correction factors appear, numerically, only as changes in 
amplitude). (~9) Note the lambda (or critical) line separating ordered and disordered phases: 
no such feature is seen in the experiments on phase separation in electrolytes. 
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Pitzer system TM ~, --- 1.01 + 0.01 has been found, (17) supporting the hypothesis 
Ion = CI, namely, that ionic criticality should be classical in character. 

In light of these further experiments, Kholodenko and Beyerlein 
returned to the fray in 1993. ~8~ Again citing ref. 14 (but with no mention 
of the criticisms in ref. 15), they now suggested that criticality in symmetric 
electrolytes (such as the RPM) exhibiting exponents f l= 1/2 and ),= 1 
might be "well understood" in terms of the tricritical behavior found in 
systems such as the antiferromagnetic Blume-Emery-Griffiths (BEG) 
model (a spin-one Ising model) and observed experimentally in superfluid 
helium three-four mixtures and certain magnetic materials (see, e.g., 
ref. 19). 

Unfortunately, it is difficult to take this proposal seriously. In the first 
place, a tricritical point is a multicritical point characterized by four rele- 
vant thermodynamic fields Ijg~ as against a normal critical point with only 
two. (In the antiferro-BEG model the four fields are temperature, uniform 
magnetic field, staggered magnetic field, and a more subtle cubic/third- 
order staggered field.) But there is no experimental evidence for such extra 
relevant fields beyond temperature and chemical potential. One might, 
nonetheless, suppose (although for no very good reason in a generic 
chemical system) that attention could be confined to the tricritical plane 
of symmetry. (This is, e.g., appropriate for helium three-four mixtures.) 
Then for d =  3 dimensions there is, indeed, a coexistence curve and also a 
diverging susceptibility which can be described by "; = 1 (although with 
logarithmic correction factors~'9~). Perhaps this seems encouraging: 
however, as sketched in Fig. 1, this coexistence curve must be described by 
an exponent /~= 1 (up to small logarithmic corrections) ~19~ rather than 
fl = 1/2 (which pertains only to some analog of the staggered magnetiza- 
tion). More importantly, there must necessarily be, in addition, a lambda or 
critical line that emanates from the peak of the coexistence curve and 
separates a disordered "low-density" region from an ordered "high-density" 
region (or vice versa): see Fig. 1. This is a profound difficulty since the 
observations of phase separation and criticality under consideration give 
no hint of any such critical line; nor is there convincing reason for thinking 
there should be one. 

4. IS ING-LIKE V E R S U S  CLASSICAL 

At present, therefore, there are no serious contenders for Other in the 
equation Ion = Other; it is, however, premature to conclude that only the 
classical option remains open even though, at first hearing, Ion=CI  is 
rather plausible in view of the long-range nature of the electrostatic poten- 
tial: Recall that in a single-component fluid of, say, hard spheres governed 
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by an attractive Kac potential, q~(r)= u(r/Ro)/R'~ of range Ro, classical 
criticality is attained when Ro ~ oo. 12~ However, the long-range Coulom- 
bic forces are exponentially screened at finite ionic concentrations (when 
d > 2 ) ;  furthermore, in the experiments, the Debye screening length 
Ct~ = 1/x [calculated by the standard formula: see, e.g., Eq. (14) below-] 
seems to be quite small in the critical region, typically say 6-8/~ or 
less, c j6'211 whereas the correlation length amplitude for scattering by the 
density fluctuations is Go-  10 ~, in the Pitzer system. 1171 

On the other hand, a newly formulated phenomenological classifica- 
tion ~5"21"6~ distinguishes solvophobic phase separation, driven primarily by 
short-range repulsive solvent-salt or vacuum-salt net interactions, from 
Coulornbic phase separation, driven primarily by the strong electrostatic 
forces. Systems in the former class are expected to display Ising-like criti- 
cality with little contribution from the ions (as in the Japas-Levelt Sengers 
system~4~); those in the Coulombic class, by contrast, should resemble the 
RPM via the laws of corresponding states~22~: in particular, the relative 
critical density/concentration/volume fraction P,./Pmax should be small (see 
further below, especially Fig. 5). In addition, ionic association plays a 
significant role, as gauged through the conductivity, etc., ~5'-'~'23~ and, so it 
appears, they exhibit classical critical behavior. 13'5"t6~ 

At the observational level these distinctions are certainly meaningful 
and, indeed, seem quite sharp. Clearly, an aim of a more fundamental 
theory must be to cast light on this important classification by translating 
it into one or more quantitative (model?) parameters that might be shown 
in some analytical way to control the type of criticality or to determine the 
rate of approach to asymptotic behavior, i.e., to control crossover. 

To investigate these matters theoretically it is useful to entertain 
various possible scenarios. For example, strong crossovers are often 
associated with the close vicinity of a multicritical point of some type. An 
interesting example is provided by the behavior of solutions of polymers of 
length N monomers in a poor solvent (see, e.g., ref. 24). Below a critical 
temperature T,.(N) phase separation occurs into an extremely dilute solu- 
tion of more or less isolated polymer molecules and a more concentrated, 
but still dilute solution in which polymer-polymer interactions play a role. 
A typical coexistence curve for such a system is sketched in Fig. 2: Note the 
strong asymmetry and the linearity of the high-concentration side of the 
curve for t <Q.8T,.. 

In fact, if one examines the coexistence curve for, say, NaC1 or for the 
RPM, as based on estimates presented by Pitzer ~s~ (see also recent Monte 
Carlo studies discussed below~'-5'z6~), one is struck by a strong resemblance! 
Could this resemblance be more than "skin deep"? (See also ref. 27.) One 
knows, in fact, that such polymer solutions are controlled by the small 
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Fig. 2. Sketch of a coexistence curve of a solution of polymer molecules of degree of 
polymerization N in a poor solvent. In the limit N ~ co, the theta point appears at To and 
Po = 0. The dotted lines on the p = 0 axis indicate the critical-like singularities associated with 
the behavior of long (N--, oo) self-avoiding polymer molecules at infinite dilution. Above T~ 
this line is the analog of the lambda line in Fig. 1 and might, speculatively, correspond to the 
Debye-Hiickel limiting-law singularities arising when p -+ 0. 
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parameter 1/x/~.t24~ That sets the scale of p,.(N) and of [ T , . ( ~ ) -  T,.(N)]. 
In the limit N o  co one attains the so-called Flory theta point at T =  To 
and Pe = 0: see Fig. 2. This, in turn, may be described in RG theory by a 
suitable (zero-density) trieritical point with (for d >t 3) appropriate classical 
exponents and a linear (fl = 1 ) coexistence curve. Furthermore, as N--* oo 
the nonclassical/Ising-like regions of the coexistence curves shrink so they 
appear more classical. 

Of course, there is no obvious analog of the crucial parameter N in 
electrolyte solutions. Is it possible, nonetheless, that a formulation can be 
found for ionic systems in which P,-/Pma* plays a similar role to l / x / ~ ?  
Then P,./Pm,,-~ 0 would yield a type of tricritical point at p = 0  with 
T ,~=l im T,.(p,./pm,~ ~ 0 ) .  The rote of the nontrivial single-chain, self- 
avoiding walk statistics c-'41 in the dilute-limit polymer solutions above Ttr  i 

would naturally be played by the Debye-Hiickel limiting laws, which 
entail, as is well known, the p3/2 singularity in the virial expansion as 
p ~ 0. t28-30~ Crossover to such a tricritical point might conceivably explain 
the apparent classical character of ionic criticality. But, in the absence of 
some reasonable theoretical proposal for identifying the analog of polymer 
length, this speculation is to be regarded as no more than a guide to what 
might be uncovered by a good theory.-' 

5. LATTICE M O D E L S  A N D  M U L T I C R I T I C A L I T Y  

In light of the solvophobic/Coulombic phenomenological classification 
it seems essential to study carefully models that encompass features of both 
classes. (Equally, experiments might be designed with a multicomponent 
and, hence, "tunable" solvent in order to explore the behavior of "inter- 
polating" systems.) In selecting such models one should recall the crucial 
role played by the lattice gas alias the Ising model in understanding 
criticality in simple, nonionic classical fluids. Accordingly, it seems timely 
to examine dissociative lattice models. The simplest such model embodying 
the necessary features seems to be the four-state lattice electrolyte specified 
byt3~l: 

Each lattice site may be (i) empty or (ii) occupied by a (neutral) 
molecule at activity z, or (iii) a positive or (iv) negative ion of charge +q,  
respectively. 

Nearest-neighbor attractive interactions of strength, say Co, operate 

-' More recently, with Y. Levin and X.-J. Li, author has shown that withhl Debye-Hiickel 
theory for general dimensionality d, this scenario is realized when d--*2+ and then 
l/x/N~ (d-2). The limiting coexistence curve is described by p, = P~as = 0 and ~ (really fl, 
see above) equal to unity with logarithmic corrections. However, improvements in the 
theory (see below and ref. 60) do not sustain this picture. 
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between molecules; between ions only the (lattice) Coulombic potential 
acts. The density of ions relative to molecules is controlled by an activity 

y=exp( - -Ed i  .... /kBT) 

which can also be regarded as defining a chemical equilibrium constant 
K(T) for the reaction M~,-~-I § + I - .  When y--*0 one has a simple, well- 
understood (see, e.g., ref. 32) solvophobic lattice gas displaying Ising 
criticality; when y ~ ~ with yz =,~ fixed, however, one obtains a purely 
Coulombic lattice version of the (continuum) restricted primitive model, 
say, the LRPM. The model can obviously be extended to include ion- 
molecule couplings eo+ and eo_ and short-range ionic interactions, including 
those breaking ionic symmetry (so eo+ ~-eo_, etc.): it seems overdue for 
serious study in its own right. 

Note, first, that by virtue of the lattice character one can gain some 
explicit theoretical control over the dense phase(s) of the model. One such 
phase should be an ionic crystal which coexists with an ionic, 
Debye-Hfickel vapor at low T and which then melts into a dense ionic 
fluid. It is certainly possible to generate low-temperature expansions 
describing this coexistence that should pin down the low-T region of the 
phase diagram. 

Second, Monte Carlo simulations of this model offer the possibility, as 
in other lattice models (see, e.g., ref. 33), of making reasonable estimates of 
the critical behavior itself as, say, y is varied. That should at least reveal if 
there are regions where crossover from CI to lsg might arise (as in 
Na +NH3).  

Figure 3 shows a highly speculative phase diagram for this model 
embodying insights from the significant work of Nabutovskii eta/., ~341 who 
argued that certain electrolytes near criticality were susceptible to an 
instability into a charge density wave phase. Such an instability is, in 
essence, associated with a Lifshitz multicritical point135~: see Figs. 3 and 4. 
Nabutovskii's work is essentially based on a Landau-Ginzburg charge and 
density expansion truncated at the quadratic or Gaussian level. It has been 
discussed recently by Hcye and Stell, 18~ but seems to warrant further study 
as regards the nature of ionic criticality. 

Figure 3 also illustrates an important conceptual point concerning 
plausible scenarios. If one discounts criticality with continuously variable 
exponents (which are generically implausible in d = 3  dimensions), two 
hypothetically distinct sorts of critical behavior, such as lsg and Ion, cannot 
transform smoothly into one another in a phase diagram. Either the 
corresponding critical lines (or surfaces) must be finitely separated from 
one another, as suggested by Fig. 3; or, if the critical lines (or surfaces) do 
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Fig. 3. A speculative and schematic phase diagram for a dissociative lattice gas model elec- 
trolyte in terms of the transformed overall activity _~ = z/(l + z) and transformed dissociative 
activity i ~ = y/(1 + y), where y =  exp(-Eais/k ~ T) (see text). Note the Lifshitz multicritical 
point L terminating the solvophobic critical line at small y and delimiting the Coulombic 
(large y) region. This illustrates a possible scenario uncovered by Nabutovskii and 
co-workers, c34~ Lines of tricritical points (denoted by triangles) and an XY-like critical surface 
emanate from L; but in a continuum model or a sufficiently isotropic lattice model this critical 
surface is expected to be weakly first order in character? ~6~ Inside the surface appears a 
charge-density-wave phase somewhat analogous to a liquid crystal, c34~ At large enough y, 
however, this should transform into an ionic crystal. (The behavior of ANNNI models c37 39) 
is relevant to the details of the spatially modulated phases in a lattice model.) Growing from 
the melting surface of the spatially modulated phases are shown two "wings" of first-order 
transitions (related by particle-hole symmetry in the simplest models). These wings terminate 
in critical lines that are quite distinct from the Iow-y solvophobic critical lines and are thus 
candidates for describing ionic criticality with nonstandard exponents. Note that the 
particle-hole symmetry is artificial as regards the description of the phase diagrams of 
continuum-space models ~t high densities: thus, when interpreting this figure for a continuum 
situation, the upper third, say ,~> 2/3, should be dispensed with. Alternatively, one may 
introduce lattice hard cores of finite extent--nearest-neighbor repulsions will suffice--which 
have essentially the same effect. 
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Fig. 4. Successive sections of Fig. 3 at increasing 77 illustrating schematically (b) the near- 
critical charge-density instability uncovered by Nabutovskii et aL ~34~ and (c, d) the possible 
eventual appearance of a disconnected first-order surface terminating in a critical point which, 
conceivably, could be of non-lsing type. 

meet, there must be_a separating multicri t ical  point  (or line) such as the 
Lifshitz point, 135~ shown in Fig. 3, or  a bicritical point (see, e.g., ref. 40), etc. 
In general, the mult icri t icalpoint  must have its own distinct exponents and 
associated thermodynamic structure. If, in some reasonable model or  some 
real physical system, an Ising-like and an ionic critical line do smoothly 
join and transform into one another as some parameter, say the pressure 
or magnetic field, varies, then that fact represents a strong argument in 
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favor of Ion = lsg. The conclusion that a crossover phenomenon is at the 
heart of the matter follows and Q.2b ("What fixes tx?") becomes vital. 

These observations demonstrate the value of studying the phase 
diagrams of a range of dissociative lattice gas models. In particular, one 
should confirm, refine, or, more probably, correct Fig. 3. One approach 
available again for lattice models (but not for continuum models) is via 
real-space renormalization group approximations, such as the Migdal- 
Kadanoff method and its extensions. ~41 44) These are useful because they 
generate nonclassical exponents which are distinct for different multicritical 
points. Frequently, however, especially for d =  3 dimensions, the exponent 
values are not at all accurate. Nevertheless, interesting information about 
phase diagrams can often be obtained (although one must still be alert to 
pitfalls: see, e.g., ref. 45). 

A notable merit of discrete-state lattice models, which can also be 
exploited, is the ability, via Kac-Hubbard-Stratonovich transformations, 
etc., to derive corresponding field-theoretic models with some control over 
the magnitudes of various pertinent terms in the effective Hamiltonian. t3'l 
Important to this enterprise for ionic models is that the long-range Coulomb 
interaction can be exactly represented in terms of a local (explicitly, 
nearest-neighbor) effective Hamiitonian via the so-called sine-Gordan 
transformation. 146'471 This, indeed, forms the basis of a rigorous proof 147'48~ 
that for small enough z and q2/akB T, full Debye screening occurs in the 
primitive lattice model (in d =  3 dimensions); i.e., a// correlation functions 
decay exponentially. 

Given a field-theoretic Hamiltonian, one is in a position to implement 
a renormalization-group ( e=  4 -  d)-expansion. An exploratory investiga- 
tion ~3~ suggests that this should clarffy more definitively the issue of solvo- 
phobic electrolyte criticality remaining Ising-like. That could significantly 
extend the considerations of Stell and Hcye 18'91 and Nabutovskii et  a l J  34) 

Beyond that, if a distinct type of ionic criticality actually exists, such 
an RG treatment might reveal its nature, so answering Q.2a. This route 
was, of course, the way our understanding of the critical effects of long- 
range power-law potentials decaying as (p(r) ~ l / r  d+ '~ (a > 0) was originally 
obtained. 149~ 

Otherwise, one may reasonably hope that it will point to an answer to 
Q.2b and suggest why apparent classical behavior is typical. In this respect, 
the theoretical discussions of crossover to classical behavior in micellar 
phase separation (where 7<1  was originally claimed ~5~ are both 
instructive and cautionary~5'-'53~; note, in particular, the calculation of the 
crossover function for the effective exponent to O(e-'), ~53~ which could be 
useful in future work. 

Finally, lattice models offer some hope of exact solution, at least in 
certain limits. However, for the present problem it is essential to examine 
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Coulombic potentials in dimensions satisfying 2 < d <  4. The Bethe lattice, 
on which many problems have been instructively solved, is therefore 
probably not so worthwhile. However, suitably chosen spherical models 
might prove interesting (compare with ref. 54, where critical endpoints were 
studied). (One should not, of course, allow confusion with the MSA or 
mean spherical approximationJ ~2"5s~) Smith ~56~ has, indeed, studied a 
spherical model with Coulombic interactions: a crossover to asymptotic 
oscillatory behavior of the charge correlation functions was found and also 
a phase transition to a charge-ordered or crystalline state. (Compare with 
Figs. 3 and 4.) Unfortunately, this model lacks, in essence, an overall 
activity z and it has no charge discreteness. It may, however, be possible 
to modify or extend the model in useful ways by introducing dissociative 
aspects, etc., mimicking the discrete four-state model described above. 

6. THE CRITICAL POINT OF THE RESTRICTED PRIMIT IVE 
MODEL 

Although lattice models have distinct theoretical advantages, as out- 
lined above, they have not been studied very seriously. Even if they had 
been, one would still wish to understand, as far as possible, the behavior 
of continuum models which are certainly more realistic as regards gas- 
liquid phase separation (although perhaps hardly more so for solutions 
with discrete solvent molecules of sizes comparable to those of the ions). 
The most basic continuum model is undoubtedly that originally considered 
by Debye and Hiickel (DH), 128~ namely, the RPM consisting of i =  
1, 2 ..... N+ + N _  = N =  p V hard spheres of diameter a, N+ = �89 carrying 
charges q; = +q, and N_ = �89 charges q~ = -q .  The solvent is represented 
merely by a dielectric constant D embodied in the pair potential 

qg~j(rij)=qiqjDri j for t%>a (7) 

The basic energy scale is set by the maximum binding energy for a pair of 
ions, namely 

~=q2/Da (8) 

The natural temperature and density scales are thus 

T* =kBT/~  and p* = p a  3 (9) 

For the various cubic lattice packings one has * P m a x  =-- fl~ee = X//~ while 
p ~ =  ] x / ~  and p * =  1. 

Does the RPM undergo gas-liquid phase separation? And, if so, what 
are the critical parameters T,* and p*? A naive mean-field theory based on 
uniformly distributed ions must predict no gas-liquid transition in the 
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RPM since a hard-sphere fluid has none and the positive and negative 
parts of the pure Coulomb potential cancel exactly! Nevertheless, in 1968 
Stillinger and Lovett t57~ asserted, without discussion, but apparently in 
analogy to observed criticality in real fused salts (see also McQuarrie 1581) 
that there was a critical point; but as to where, they remained silent. Today 
no one doubts their conclusion, but "How may one estimate the location 
of the critical point?" 

To answer this, recall first that van der Waals (vdW) theory for simple 
fluids can be obtained readily by constructing the reduced Helmholtz free 
energy f = - F ( T ;  Na, Nb .... ; V)/N for species k=a, b .... with densities 
p~= NJV,  etc., as a sum of terms. For a single-component system, one 
needs just 

fvdW(T ' p ) =  fidCal + f n c  + f 2 v  (10) 

where (i) the usual expression for an ideal gas with molecular partition 
function ( (T) i s  

fideal = kB T{p - p In[pA3( T)/(( T) ] (11) 

(ii) the repulsive interactions are represented by the hard-core term 
fHC(T,p), traditionally approximated by a free-volume expression 
diverging at Pmax; and (iii) the attractions are introduced via a second 
virial coefficient, namely, 

f2V(p)=Ap2, A > 0  (12) 

At a semiquantitative level this theory is rather successful. Thus in 
Fig. 5 the coexistence curves (a) and (c) represent vdW theory for a lattice 
system [using the exact single-site form for fHC(T,p)] and for a 
continuum, respectively. Plots (b )and  (d)depict the corresponding "true" 
results (known through series expansions, experiments, and simulations to 
very adequate precision). Lattice vdW theory reproduces the exact value of 
p,./pmax(= 1/2) but overestimates 7",* [using e=  [~min], where (p(r) is the 
pair potential] by 20-25%; the original vdW continuum theory predicts 
T* only some 15% too high and gives P,./Pma~ = 1/3 compared with ~0.29 
for typical gas-liquid criticality. Of course, the vdW theories yield fl = 1/2 
in place of fl~,g ~. 0.325, the latter value reflecting the much flatter maxima 
of the "true" coexistence curves. 

Can one do as well in such a physically clear and direct way for the 
RPM electrolyte? A natural first thought (see also ref. 59) is to replace 
f2V(p) in (10) by the well-known Debye-Hiickel limiting law 128 3ol 

fLL(T, p) = k a TK3/12g = C p 3 / 2 / T  1/2 (13) 
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T*= kBT/ e 

2 . 5  

( a )  M F T  

2 

1 

for electrolytes 

0 . 1  , , ,  ( g )  R P M  I . . . . . . . .  ^ . ^  . ~ . . . 

~ 0.1 ~ ~ 0.5 p/pm =p* 1.0 

Fig. 5. Semiquantitative coexistence curves illustrating the differences between typical 
solvophobic and Coulombic critical parameters {see text}: P/Pma~ is plotted versus 
T* = k s T/z, where, for continuum systems, P,,.a~ may be taken as the density of the crystal or 
(equivalently, within the precision sought} of the liquid at the triple point, while e=  [q~mi, I is 
measured by the minimum of the attractive part of the pair potentials; for the (singly charged} 
ionic systems one has ~, = q~'/Da. Van der Waals (or mean field} critical points (a, e) for lattice 
models and (c, f) for continuum systems are compared with the corresponding "true" results 
for (b} nearest-neighbor lattice gases, (d) Lennard-Jones (12, 6) or argon-like continuum 
fluids, and {g) the restricted primitive model (as assessed via recent simulations~-'5'-'6~}. The 
critical parameter p , /p , k~T , ,  shows similar trends, taking the values (at 0.386..., (bl-0.254, 
(c) 0.3750, (dl 0.290, (e] 0.216..., (f) 0.2083, while the value for the RPM is still subject to con- 
siderable uncertainty. The ionic mean field results (e} and (f) use the Debye-Hfckel limiting 
law-form -Cp3"'- /T ~i" for the increment to p / k a T  in place of the standard, van der Waals 
second virial coefficient term - A p Z / T .  Evidently the changes in the critical parameters T,* 
and p , . / p ~  away from the solvophobic (or short-range single-component) values are in the 
correct direction (downward }, but by factors that are not nearly small enough to approximate 
the RPM (g). 
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where the inverse Debye screening length is given by 

K2( T, p ++ p _ ) = 4rtq 2(p ++ p _ )/DkB T (14) 

For lattice and continuum systems this yields ~6~ the coexistence curves 
(e) and (f) in Fig. 5, respectively. Both pc/Pmax(= 1/3 and 1/5) and 
T * ( =  0.5-0.6) have dropped significantly. But are these estimates anywhere 
near correct? 

The answer is a resounding "No!": the true values of T,* and Pc/Pmax 
both appear to be an order of magnitude smaller. Indeed, evidence 
suggests~60 

T,* 2 0 . 0 5 7 _  15 and p,* ~- 0.030-T- 8 (15) 

where the signs of the uncertainties are correlated (see also Fig. 6 below). 
These dramatically small numbers highlight the theoretical problem and 
indicate the subtlety of phase separation and criticality in pure Coulombic 
systems. The justification of (14) brings us to the next chapter of the story. 

7. THE  ENTRY OF M O N T E  CARLO 

The power of modern computers suggests that Monte Carlo and 
related simulation methods should provide a good handle on the RPM. 
The actual history, however, is not so encouraging. The first serious studies 
seem to be those of Vorontsov-Veliaminov and co-workers in the Soviet 
Union in 1970-1976 (6t 63) (see also ref. 22). They saw evidence of a trans- 
ition with T,* ~- 0.094 and with p,* in the range 0.3--0.4(63): these estimates 
differ drastically from (14). Figure 6 shows, in plot (a), a representation of 
their proposed coexistence curvet22'63~: note the logarithmic density scale. 
Unhappily, the result seems to bear comparatively little relation to the 
t ruth--a  not so uncommon feature of early Monte Carlo studies where the 
difficulties of attaining proper equilibrium and allowing for finite-size 
effects were not well appreciated. Indeed, by 1979 Voronstsov-Veliaminov 
seems to have concluded that his estimate of p,* needed to be reduced by 
a factor of about 3. (See text in ref. 22 associated with ref. 31.) 

The first serious analytical attack on criticality was reported in a 
pioneering article by Stell et al. c59) in 1976. They brought to bear a wide 
range of mode.rn approaches to liquid theory involving truncations of dif- 
ferent systematic series expansions, various approximate integral equations, 
etc. All methods confirmed the presence of phase separation and of 
criticality at small T*, but the quantitative agreement among them was 
relatively poor. Stell et al., in summary, stated preferred overall estimates of 
T,* ~ 0.085 (with uncertainties of order + 10%, not so far from Vorontsov- 

822/75/1-2-2 
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Fig. 6. Coexistence curves (and critical parameters) for the restricted primitive model 
advanced on the basis of Monte Carlo calculations by (a) Vorontsov-Veliaminov etal. 
(1970_1976),~61 63~ (c) Valleau for 32 ions (1991), c2s~ and (d) Panagiotopoulos for 512 ions 
(1991)(26~ and (b) schematically, using various systematic approximation schemes by Stell, 
Wu, and Larsen (1976). '59~ The point (e) is marked for comparison with Fig. 7. The plot (f) 
is reproduced from ref. 22: see text. The curves connecting the data points in cases (c) and (d) 
are no more than guides to the eye. The sloping box probably contains the true critical point. 
[Note that a similar figure in ref. 26 misplots the results (a), (b), and (f).] 

Veliaminov etal.) and p,* "~ 0 .011(591:  s e e  plot (b) in Fig. 6 and note the 
strikingly low value estimated for p,* (although it is subject to uncertainties 
of + 50%(59)). 

Subsequent work, notably, by Gillan 164) and Pitzer and co-workers 15'65~ 
carefully examined the low-density, low-temperature vapor phase. One 
quickly discovers, as emphasized by Bjerrum ~66~ already in 1926--only 3 
years after the Debye-Hfickel theory was published(ZS)--that for T * <  1/4 
a significant amount of ion-pairing or neutral dimer formation appears�9 
Indeed, as T falls further, increasing association of ions into rather tightly 
bound trimers, tetramers, etc., also occurs. By calculating the thermo- 
dynamic properties of the dominant clusters as far as feasible (invoking 
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Monte Carlo and other aids), the free energy of the electrolyte vapor can 
be estimated. (However, the inevitable degree of arbitrariness in defining a 
bound cluster should be noticed.) Combining the vapor data with 
improved Monte Carlo estimates 1671 of the liquid free energy below 7",. 
yields estimates for the phase boundary and thence the coexistence curve. 
Plausible extrapolation tS~ suggests, in particular, that p,* exceeds 0.02 in 
accord with (14). 

The low value of T,* and the consequent strong clustering constitute, 
in fact, a major challenge to direct Monte Carlo simulation in the broad 
critical neighborhood: thus the ion pairs, in particular, can be very tightly 
bound, since exp( - e/kB T) = exp( - l /T*)  < 4 x 10-6 for T* < 0.08. Conse- 
quently, it is hard to be sure that equilibrium is achieved in the time 
available for simulation. The long-range character of the Coulomb force 
and the associated finite-size boundary conditions pose further problems. 
Nevertheless, two recent studies inspire somewhat increased confidence. 

In 1991 Valleau c'-51 simulated a system of N =  N+ + N_ = 32 ions at 
three low temperatures: see Fig. 6, plot (c). He concluded that T,* was 
close to 0.070, significantly lower than the results of Stell et al., ~591 whereas 
p,* appeared much higher at about 0.07. The implied coexistence curve 
would then appear rather sharp: see Fig. 6. If one supposed that it should 
instead be somewhat rounded off, one might rather conclude T,* 
-~ 0.068 +_ 15 and p,* = 0.06 _+ 1. 

Very soon after Valleau's work Panagiotopoulos ~261 introduced a 
novel Monte Carlo method--a  Gibbs-ensemble technique--especially 
designed to facilitate the investigation of phase transitions by running, 
simultaneously, two distinct simulations at the same temperature and 
chemical potential /~, but with differing densities. His results for N = 5 1 2  
ions at T* =0.035 ..... 0.055 are displayed in Fig. 6, plot (d) .  ~261 

The disagreement with the data of Valleau is rather large and perhaps 
surprising. While differences in the electrostatic boundary conditions 3 
certainly play a role, it seems likely that the larger value of N is also 
important. Indeed, finite-size scaling theory for critical points ~6s'69~ shows 
that the shift or rounding of a critical point should scale as 

[ T c ( N ) -  Tc(oo)]/Tc(oo)'~ AT/T,,(oo) ~ (~gpc/N) '/a" (16) 

If we take v _  1/2, the change in N -l/dv is from 0.10 to 0.016, a factor 6.3 
improvement; this falls to about 4.3 if v = 0.63; but, either way, it seems 
that the Panagiotopoulos data 126~ should be significantly closer to the true 
behavior of the RPM. 

3 See especially J. M. Caillol, J. Chem. Phys. 100, 2161 (1994). 
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Panagiotopoulos himself stated T,* =0.056 and p* =0.040 without 
any discussiont26~: but those values would seem to imply an unusually 
flat coexistence curve with a rather small value for the exponent ft. If, 
however, one neglects further finite-size effects and accepts 1/2<~fl<~ 1, 
Panagi0topoulos' data can be roughly extrapolated--a linear (p, T) plot 
seems preferable to the logarithmic plot of Fig. 6: this suggests that the 
sloping box shown in Fig. 6 probably contains the critical point of the 
RPM. The estimate (15) roughly represents this conclusion: however, inso- 
far as the Valleau and Panagiotopoulos data are comparable, extrapolation 
on N using (16) suggests that T,* could well be from 3 to 6% lower than 
indicated by (15). Likewise, there will be shifts Ap~(N) in the critical 
density: their scaling properties are somewhat more subtle (entailing the 
breaking of the expected asymptotic gas-liquid symmetry). Evidently, (15) 
cannot be regarded as definitive until further, more precise simulations are 
performed that in particular also allow systematic extrapolation on system 
size. It may be some time before such calculations prove feasible. By the 
same token the likelihood that one could convincingly distinguish classical 
from Ising-like critical behavior by Monte Carlo studies seems remote at 
present. 

8. MEAN-F IELD THEORIES FOR ELECTROLYTES 

We may accept the estimates (15) for the location of the critical point 
of the RPM and note that, via the law of corresponding states, t2~-z2"7~ 
Coulombic electrolytes seems to match the model reasonably well. Unfor- 
tunately, however, the Monte Carlo calculations leading to (15) provide 
little if any physical insight into the small magnitudes of T,* and p,*. 
Hardly more really seems to be gained from the analytic truncation 
schemes, tsg) nor from the solution of various approximate integral equa- 
tions, such as the HNC and PY equations (see, e.g., refs. 22, 71, and 72). 
Indeed, as observed some time ago, t73~ most of the standard approximate 
integral equations for fluids when applied in the critical region seem to give 
highly unphysical, not to say disastrous, accounts of the thermodynamics 
and correlation functions (on which they are based). 171 731 By comparison, 
van der Waals equations, despite their inability to reproduce the Ising-like 
exponents, appear as paragons of virtue! [Recall Fig. 5, plots (a)-(d).] 

The most hopeful route to resolving theoretically the Coulombic- 
solvophobic dichotomy would seem to lie in a renormalization group 
treatment. However, many, if not most, successful RG theories of particular 
types of criticality and multicriticality have rested on crucial physical 
insights into the causes and character of the transition in question. 
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Frequently these in turn have been embodied in some sort of mean field 
theory. Accordingly we return to the question of Section 6: "Is there a 
simple, physically transparent, semiquantitative theory of criticality in the 
RPM?"  

In fact, the answer seems to be "Yes! ''(6~ To explain this, recall, first, 
the famous theory of Debye and Hiickel (DH), C281 perhaps the first theory 
to embody fluctuating particle-particle correlations in a fundamental way. 
DH focus on the free energy of an ion i embedded in a sea of other ions 
j, positive and negative, distributed about it at distance r according to the 
Boltzmann factor exp[-qiqk~(r) /kaT ], where ~i(r) is the mean local 
electrostatic potential around i.128 3ol This leads directly to the Poisson- 
Boltzmann (PB) equation for ~bi(r). Linearizing the PB equation facilitates 
its solution, but also ensures the satisfaction of important statistical con- 
sistency conditions. 129'3~ Thence follows the crucial DH screening of the 
bare Coulomb interaction by the factor e -~r, where, for the RPM, x(T, p) 
is given by (14) above. The finite diameter a of the ions enters via a natural 
boundary condition which simply asserts that any screening charge 
vanishes for r~< a. ~28-3~ Finally, a simple charging process--switching on 
the electrostatic interactions by putting qi ~ 2q; and integrating from 2 = 0 
to 1--yields the Coulombic contribution to the free energy as 

fDn  = ka T[in(l  + Ka) - ~:a - �89 3 (17) 

Note that when p, and so xa, becomes small this reproduces the limiting 
law (13): that, however, is independen.t of the ionic diameter a and hence 
lacks an important part of the physics. (Note, indeed, that a point-charge 
classical electrolyte with no repulsive cores would actually collapse, having 
a free energy unbounded below.) 

The combination f=fidea~ +fDH [see Eq. (11)] then constitutes the 
DH theory--advanced over 70 years ago. It was, of course, highly success- 
ful in accounting for the basic properties of real electrolytes. And, indeed, 
the limiting laws, Eq. (13), etc., were subsequently shown to be exact 
consequences of statistical mechanics. ~29'3~ However, only in the last few 
years has it been realized ~6~176 that the DH theory itself predicts a critical 
point for the RPM. The critical parameters turn out to be  16~176 

1 1 
�9 T,* - ~ -  0.0625, p,*= =0.00497... (18) 

16 64n 

with, furthermore, 

~c,.a = 1 and pc/p,.kB T,. = 16 In 2 - 11 = 0.09035... (19) 
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Evidently, then, there is indeed a very physical  theory that  predicts  a Tc* 
for the R P M  just  7 - 1 3 %  above  the Monte  Car lo-based  est imate (15)! It 
would seem to parallel  vdW theory for simple fluids. The  cor responding  
coexistence curve is shown in Fig. 7. Natura l ly ,  all the critical exponents  
are classical. 

Fol lowing vdW theory,  one may also add a free-volume term f H r  to 
account  for the hard-core  exclusions. If the volume paramete r  is chosen to 
get the correct second virial coefficient, T,* is reduced, but  only by about  
1.9% (while p,. falls by 8.5%). On the other  hand,  the D H  predict ion 
for the critical density, which can be written, invoking (14), as 
p,? = (~c,.a) 2 T*/4n, is too low by a factor of 5-7. Can this not  so trivial 
defect be unders tood and corrected? 

__•/• I , i'l'l I I I 
r  

0.06 ~- -kk D H  ~ - ~  . 

0.03; ' ' '0.05 0'.1 0.15 012 ~ .25  p* 

Fig. 7. Coexistence curves predicted for the restricted primitive model: according to the 
original theory of Debye and HiickeV TM (DH) and by the theory as modified by inclusion of 
neutral, ideal ion pairs according to the proposal of Bjerrum (66) (DHBj). The peculiar 
"banana" shape implied by the DHBj theory is a direct consequence of the assumption that 
the strongly dipolar ion pairs have no interactions with the ionic fluid of free ions or with each 
other: see text. The sloping box represents the estimates for the true critical point of the RPM: 
see also Fig. 6. in which (e) represents the pure DH critical point, while (f) somewhat 
misrepresents the DHBj theoryJ TM 
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9. BJERRUM ASSOCIATION 

Now a major approximation of DH theory is the linearization of 
exp[ -q i~ i ( r ) / kBT  ]. This is clearly most serious (i) when q i = - q ~  and 
r ~ a, so that qfl~ ,~ - q  2/Da, and (ii) when T* = k a TDa/q 2 is small (which 
it is near criticality). But, as discussed in Section 8, these are just the 
circumstances leading to the significant association o f + a n d - i o n s  into 
strongly bound neutral pairs. By allowing for such dimers one can, in fact, 
go a long way to improve DH theory as shown by Bjerrum, ~66~ who treated 
the neutral bound pairs as a distinct, ideal (i.e., noninteracting) chemical 
species in equilibrium with the DH ions. 

Theoretically it is advantageous to consider the pressure 16~ 

p(T; p,, P2)=max  {f(T; p,, P2)+I~,P~ + P2P2} 
P I �9 P 2  

(20) 

where now p~ = p +  + p _  is the density of free ions, while P2 is the density 
of the uncharged dimers; of course, p~ and P2 are the corresponding 
chemical potentials. Chemical equilibrium is ensured by imposing /~2= 
2p~ (=  p§ +/a_). In addition, one needs to know the association constant 

K(T)  =- ~2(T)/~+(T) ~_(T)  (21) 

where the ~k are the dimer and monomer internal partition functions: see 
Eq. (1 1 ) above. 

By considering, say, a positive ion attracted by the direct field of a 
negative ion, Bjerrum was led to the form (3~ 

d 

K(T)  = 4n f,, [exp( + q2/k B TDr)] r 2 dr (22) 

The lower cutoff clearly expresses the hard-core condition: without the 
upper cutoff, however, the integral would diverge. Bjerrum proposed to 
take d =  �89 (for T* ~<2), which corresponds to the minimum of the 
integrand. At first sight this introduces a most unwelcome degree of 
arbitrariness. In consequence, many later authors have revisited the ques- 
tion. It translSires, however, that Bjerrum's choice was most judicious! 
Careful considerations by, in particular, Ebeling (3~ have led to a 
more elaborate expression for K(T)  which is not restricted to T * <  2 and 
which, moreover, ensures that DH theory is exactly corrected to order p2 
(i.e., beyond the limiting-law p3/2). (See also refs. 76 and 77.) Neverthe- 
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less, Bjerrum's form is reproduced asymptotically to all orders at low 
temperatures, giving 

K(T) = 4xa3T*et/r*[1 + 4T* + 20(T*) 2 + --. ] (23) 

while for T* < 1/10 the accuracy of (22) is already better than 2 or 3% and 
drops to less than 0.2% for T * <  1/16.16~ [It should, incidentally, be 
remarked that the form for K(T)  advocated by F u o s s  (78) and used in ref. 70 
cannot be considered satisfactory, especially for the RPM: see refs. 30 
and 77.] 

What are the predictions of the combined Debye-Hfickei and Bjerrum 
(DHBj) theory? First, o n e  f inds  t22'60'7~ that the critical temperature 
7",* = 1/16 is unchanged; so is the product x,.a = x(p~,., 7',.) = 1. However, 
the overall critical density is increased to 

e 8) 1 
p,*-p*,.+2p*,.= l+Q,6~-~ 6--~x=0.0452... (24) 

where Ql6 = 1.39049... is the critical value of the last factor in (23). It is 
clear physically that the neutral Bjerrum pairs, of density P2, reduce the 
available number of free ions, of density p j = p + + p_,  so that a larger 
overall ionic density is needed before the free ions achieve criticality. 
Comparison with the estimate (! 5) shows that agreement with expectations 
is much improved: relative to the pure DH result (18) the target has been 
overshot, but only by 50%, more or less. This is really rather satisfactory. 
In retrospect, furthermore, since the formation of ion pairs is such a strong 
nonlinear effect, it is not so surprising that it apparently escapes the 
systematic high-temperature and other series-based approximation schemes 
brought to bear by Stell, Wu, and LarsenJ 591 

But all is not well. The DHBj coexistence curve is shown in Fig. 7: it 
is most peculiar and, surely, unphysical. The rounded "banana" shape still 
exhibits the anticipated classical critical exponents (although in ref. 22 it 
was reported as a sharp "marlin spike" corresponding to f l= 1: see 
Fig. 6(f)]. What is the cause of this unexpected behavior? 

The reason is not far to seek: as T is lowered further below T, the 
association constant K(T)  increase exponentially rapidly and it becomes 
more and more favorable for the ions to pair off into the noninteracting 
Bjerrum pairs: hence the overall density needed to reach the DH phase 
boundary of the remaining, essentially independent, free ions increases 
sharply. This is what distorts the coexistence curve. Actually it is interesting 
to note that the width 

Lip(T) = Puq(T) - Pgas( T ) (25) 
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of the coexistence curve is the s a m e  in the DHBj theory as in the pure DH 
theory (as can be checked graphically in Fig. 7): it is only the diameter, 
(5(T) = �89 [P|iq(T) + Pgas(T)] that gets increasingly displaced. At a deeper 
level, the main defect of the theory is clear: even though the Bjerrum pairs 
are neutral, they do have relatively large dipole  m o m e n t s ,  which certainly 
interact with the ionic fluid as well as with one another. Bjerrum's 
approximation that the ion-pairs are ideal is thus not acceptable at the low 
temperatures in question. 

10. B E Y O N D  D E B Y E - H U C K E L  A N D  B J E R R U M  

To go further than the DHBj theory, in the hope of obtaining a satis- 
factory semiquantitative description, Levin and the author have recently 
proposed t6~ that the primary interaction of concern when ion pairs begin 
to form is that of the individual ( + ,  - ) dipolar pairs with the screening 
electrolyte fluid of free ions. Now this, in turn, can be handled by DH 
theory. More concretely, t6~ consider a closely associated pair of oppositely 
charged ions forming a dipole of magnitude q a , ,  where the mean ionic pair 
separation is a t ( T ) =  [1 +s~(T)]  a. This is clearly bounded below by the 
ionic diameter a, but must in general increase with T. Although there is 
inevitably some arbitrariness in the definition of al ,  the ambiguity is small 
for T * <  1/16: explicitly one can estimate s , (T )<0 .13  in this region, t6~ 
For a first approach, therefore, one may simply take a, = a. 

Then, using the linearized PB equation one can compute the screening 
of the dipoler field, which is, of course, controlled by the Debye factor e -  ~r. 
TO simplify the calculations, the boundary conditions are imposed on the 
surface of an e f f ec t i ve  spher ica l  cav i t y  surrounding the dipolar pair and 
of radius a2 = (1 + s2) a, "- (1 + s2) a. t6~ Then, following the DH proce- 
dure, C,_8 3o~ one finds that the dipole-ionic-fluid (DI) contribution to the 
free energy can be written 

9 9 9 

r DH = ~ - a i q -  p , o ) , ( ~ a , )  
J2,1 b'~'a 2 - - - 

P t P 2  K ( T ) p ~  

a ,_T a 2 T  
(26) 

where, with x = xa2 ,  one has 

[,n (, 
(27) 
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All higher-order multipoles arising from the finite size of the ion-pair  dipole 
also contribute to the free energy and can be likewise evaluatedt6~ 
however, their total contr ibution proves quite negligible. 

Geometr ical  considerations show that  the effective cavity radius a2 is 
bounded when al = a via �89 >/s,  >~ ~ -  1 ~ -0 .13.  Elementary arguments  
further suggest that 0 . 2 5 > s 2 > 0 . 1 0 ;  more precisely, an angular  average 
gives g2 = 0-16198, t6~ which it is reasonable to use pending a more  accurate 
solution that embodies the proper  boundary  conditions (determined by the 
surfaces of two overlapping spheres of radius a with centers separated 
by al).  

Augmenting the D H  and Bj contr ibutions to the free energy with the 
dipole-ionic term (26) yields what we may  call a D H B j D I  theory. The 
coexistence curve then predicted is shown in Fig. 8: it has, once again, 
a perfectly reasonable and physically sensible shape and, naturally, is 
described by classical exponents.  The new critical parameters  are (6~ 

T,~' "0 .0574,  p,* = 0.028o, x , . a "  1.13 (28) 

i l i i , I I I I 

0 . 0 6 ~  /(a) DHBjDI 

0.05 r ~  " ' " ' " -  . . . .  

' (b) . . . .  

0.04 ' " " - - . . . .  -- 

0 0 3 ~ ,  , i i I l I I 
" 0 0.05 0.1 0.15 0.2 0.25 

p *  

Fig. 8. Coexistence curves for the RPM predicted by the Debye-Hiickel-Bjerrum theory 
augmented by the dipole-ionic (Dl) fluid coupling as computed, using DH methods, by Levin 
and Fished~ (a) the DHBjDI theory alone; (b) with the addition of free-volume terms 
Isaturating at close packing on a CsCI structure) representing the hard-core, excluded-volume 
effects. As in Figs. 6 and 7, the sloping box indicates the likely location of the true RPM 
critical point. 
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As can be seen, these fall well within the Monte Carlo-based range (14): 
that is most gratifying. However, the close agreement must be considered 
somewhat fortuitous. Certainly, it is reasonable to allow for the direct 
hard-core repulsions by adding a free-volume term. If one uses parameters 
corresponding to packing into a bcc (or CsC1) crystal, one obtains the 
second plot shown in Fig. 8. c6~ The critical point now lies somewhat lower 
at 7",* ~- 0.0554, p,* ~ 0.0260, with K,.a ~- 1.03 [but is still encompassed by 
(15)]. Note also that T,* is almost proportional to l/a2 [see (26)], so that 
improved estimates for s2 could also change the critical point estimates. 
Nevertheless, considering the conceptual simplicity of this theory, the fact 
that it matches the current Monte Carlo simulations so reasonably suggests 
that it correctly embodies the most significant physical effects. 

Refinements of the theory are readily contemplated. First, perhaps, is 
the issue of the dipole-dipole interactions (which enter at order p~ ~ p4). 
These may be included in a purely ad hoc way, as in vdW theory, via a 
term like (12) with an amplitude, say, A2.2. Numerically, in reduced units, 
a value A*,2 ~-0.1 seems reasonable--but this small value is hard to justify 
theoretically. ~6~ Rather, the relatively strong dipole-dipole attractions 
should probably be best accounted for by allowing for the formation of 
bound (2+,  2 - )  tetramers and further higher-order clusters. Clearly this 
can be accomplished along similar lines by introducing additional chemical 
potentials and appropriate new association constants, etc. 

The odd and hence charged clusters, (2 +,  1 - ) and ( 1 +,  2 -  ) trimers, 
etc., are less stable. 15'64'65~ They will also contribute to the screening, but 
can be included in the DH ionic fluid theory in the standard way. t2s 3ol 
Some allowance for their larger effective diameters as, etc., would, how- 
ever, be needed. An ingenious (but evidently approximate) suggestion of 
Debye and Hticke11281 might be invoked in that regard. According to DH 
theory the neutral clusters do not contribute to the screening directly; the 
additional free energies of the tetramers, etc., in the ionic fluid can be 
estimated along the lines used for the dimers which led to (26) and (27) 
(this will clearly be essential to avoid a repetition of the "banana effect"), 

s At higher densities and hence lower temperatures on the coexistence curve the resemblance 
of the concentrated ionic fluid to the expanded ionic crystal should be noted. ~2s'Ssj This can 
be represented by a free-energy density contribution ~(e2/D)p4/3 With a suitably chosen 
amplitude ~6~ such an extra term also improves the agreement of the coexistence curve with 
the simulations, etc., for T<~0.8T,.? 5'26} Many years ago, indeed, McQuarrie ~Ss} combined 
this term, usingits full Madelung amplitude, with a free-volume term inspired by the cell 
picture of liquids. Thereby, indeed, he obtained a passable description of RPM phase 
separation and criticality. However, the quite incorrect singular behavior of his free-energy 
functional at low densities, taking no account of Debye screening, etc., makes this approach 
basically unacceptable even though at intermediate and high densities it seems to embody 
a correct physical picture. 
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It has been suggested by Friedman 123"7s~ that an important role is 
played, once a significant number of dipoler ion pairs form, by changes in 
the dielectric constant and the associated lowering of the free energy, which 
should favor the liquid phase. For more or less permanent dipoles in a 
nonelectrolyte, such an effect may well be important. In the presence of 
strong screening by free ions, however, it seems open to serious question as 
a distinct mechanism. Indeed, the success of the DHBjDI calculations just 
described suggests that cooperative, longer-range dipole-dipole couplings 
between associative ion pairs are not quantitatively important in the RPM: 
most of the effect may be contained in the polarization of the local ionic 
fluid embodied in the expression (26). However, this could well be an 
overoptimistic assessment in light of the large predicted density of ion pairs 
in the critical region relative to the always rather low density of free ions 
(controlled by the value xea ~ 1.1 ). 

11. SOME LAST WORDS 

The mean-field approaches to the restricted primitive model reviewed 
in the previous few sections seem to have uncovered, and to represent semi- 
quantitatively, the principal physical effects leading to Coulombic criticality 
in simple, symmetric model electrolytes, namely (i) screening by the free 
ions as described by Debye and Hi.ickel, (ii) the association o f+  a n d -  ions 
to form neutral, tightly bound pairs, following Bjerrum, and (iii) the 
interaction of the dipole moments of the bound ion pairs with the screening 
ionic fluid. 

On the other hand, at this stage of the theory no account has been 
taken of the critical fluctuations. But if, as in truth seems likely (see 
Section 2) and as argued specifically by Stel1191 (but see also the Appendix), 
the RPM displays asymptotic lsing-like criticality, then the fluctuations 
must be crucial. Nor do the calculations presented yet supply any estimate 
of the size of the putative nonclassical regime, i.e., of the vital crossover 
temperature t• which is needed to understand the experiments (see 
Section 2). 

As regards the magnitude of t• it may nevertheless be that the mean 
field values of x,a  play a role. 16~ (Recall that x, .a= 1 in DH and DHBj 
theory, while x, .a~l.0-1.15 according to the augmented, DHBjDI 
theories.) For simple fluids with attractive density-density forces of range 
Ro, the Ginsburg criterion for the validity of Landau theory indicates 
t• oc (a/Ro) 6 (for d =  3 dimensions); RG theory confirms this 18~ and shows 
that R~ is appropriately defined via the second spatial moment of the pair 
interaction potential. Now it is tempting to guess that the effective 
attractive density density potential in the RPM, say ~op(r), mirrors the 
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charge-charge pair correlations and so decays as e-~r/r. [In general, of 
course, the simple DH formula (14) for x must require modification in 
the critical region: see Appendix.] Then one finds Ro oc l /x,  with an 
appropriate proportionality coefficient. On comparison with a Lennard- 
Jones (6, 12) fluid, for which the coexistence curve hardly displays a classi- 
cal region, one might thereby conclude t• <0.15t~s. ~6~ Such an inequality 
suggests that the RPM and hence its real Coulombic analogs ~ 5,21.7o~ 
should display somewhat enhanced regions of classical-like behavior. 
However, on this basis the effect would not be very strong. Furthermore, 
the argument is incomplete, on various counts: In particular, the full 
expression for t• involves not only the potential range Ro, but also other 
model (or real) parameters which could well be important. 

Second, and clearly of most importance at a fundamental level, is the 
question of the nature and detailed origin of the density or number correla- 
tion functions gp~,(r) and their relation to the charge-charge correlation 
functions gqq(r). For models lacking charge symmetry, the cross correlation 
functions g~,u(r) may well also prove of importance: However, standard RG 
considerations (see, e.g., ref. 80) suggest that effective number and charge 
critical densities (or "operators") may then result simply as particular, 
nonuniversal, linear combinations of the different ionic (and, in general, 
solvent) densities. 

Of course, the various approximate integral equations for fluids are 
formulated directly in terms of the ionic correlation functions g;j(r). This 
should make the careful study of these integral equations potentially 
rewarding; unfortunately, as mention.ed above, the predicted behavior in 
the critical region seems to be strongly unplysical, cTj 73) Nevertheless, 
various calculations, ~22'34'59~ including "mathematically exact but physically 
approximate" studies of spherical models, ~s6~ etc., do indicate the onset of 
oscillatory behavior in the charge-charge correlation functions at overall 
ionic densities comparable to the critical density. This effect is, indeed, 
consistent with the DH, mean-field values xca (=  1.0-1.15), which suggest 
a large degree of local charge ordering near criticality. Conceivably, indeed, 
it could be the comparatively longer range of the decaying envelope of the 
charge density oscillations that sets the effective range Ro. See also the 
discussion in the Appendix [where gqq(r) is to be identified with ho(r)]. 
However, the integration of such results on the correlation functions 
into a coherent picture of the critical region of model electrolytes is a 
challenging and far from completed task. 

Needless to say, real electrolytes have further complications, beyond 
those represented in the RPM or even in the extended four-state lattice 
model introduced in Section 5: the polarizability of the individual 
molecular ions is but one example. Before theorists focus too strongly on 
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such more elaborate features, however, the experience of the last three or 
four decades of studies of critical phenomena should not be forgotten. In 
particular, the careful and systematic theoretical study of the simplest 
models, especially lattice models, combined with complementary simula- 
tions (allowing properly for finite-size and boundary effects), and allied 
with precise and thorough experimental studies on well-chosen real 
systems, has provided the firmest foundations for progress. Along such 
lines, perhaps, we may look forward to the writing of the next few chapters 
in the Story of Couiombic Criticality! 

A P P E N D I X .  C O M M E N T S  ON " C R I T I C A L  B E H A V I O R  OF 
IONIC FLUID M O D E L S "  BY G. STELL 191 

Stell's article builds on and extends earlier work 17'81 including a study ~811 
applicable to long-range power-law potentials 

qg(r) ..~ l / r  d + ~  (0" > 0) (A.1) 

in d dimensions. That study anticipated some of the results later established 
by RG methods, ~49~ in particular, that classical thermodynamic criticality 
arises when d>2a(~<4). There are two principal claims: (a) it is shown 
that the restricted primitive model (RPM) electrolyte has Ising-like critical 
behavior; (b) in more realistic models, 1 / r  4 repulsive ion-ion terms (arising 
from solvent-averaged ion-dipole-ion interaction) will prevent such a 
critical point except that competing (attractive) terms that suppress its 
effect may also be present. 

Now, as explained in Section 2, the conclusion advanced in (a) has a 
good chance of being correct: the issue is thus, "How convincing are the 
arguments actually presented?" (Note that the same conclusion was stated 
in ref. 7, but there the "published remarks were brief" and "gave few techni- 
cal details. ''c9~) For the RPM, Stell decomposes the net ion-ion correlation 
functions hij(r) = gi j ( r ) -1  (where i, j =  + , - )  into density~lensity and 
charge-charge correlation functions 

hs=  �89 + h + ) and ho i + +  = ~ ( h +  + - h + _ )  (A.2) 

respectively. Symmetry dictates h+ + = h _ and h+ _ ---h_ +. 
The strategy then is to argue that hs(r) and the associated direct 

correlation function cs(r) obey essentially the same Ornstein-Zernike 
equation and same closure equation, namely, 

c ( r ) -  fl~a(r)= R[h( .  ); p; r] (A.3) 

in the critical region as does a standard, single-component fluid with net 
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pair correlation function h(r) and direct correlation function c(r). It is 
presumed that these equations suffice to determine the universal critical 
exponents (although, in contrast to RG methods, no scheme for actually 
computing their values is presented). 

The correlation functions h(r), etc., are decomposed into (a) leading 
scaling parts of the form H(Kr)/r ~+", etc., where ~---I/K is the bulk 
density--density correlation length whose divergence signals the critical 
point, plus (b) remainders whose singularities are presumed not to play a 
crucial role. A lemma [ref. 9, Eq. (1 1 )], based on a graphical, cluster-sum 
representation of the functional R[h( . )]  then asserts that, on dropping the 
nonscaling/nonleading remainders, the scaling pieces solve the same 
functional equations. Hence the same exponents are expected. 

A crucial ingredient in the application of this strategy, however, is the 
assumption, not justified in ref. 9, beyond bare assertion, that the charge 
correlation function ho(r) decays as e -rr where the inverse charge correla- 
tion length F does not vanish at the critical point. [See also remarks after 
Eq. (6.18) in ref. 7. At low densities, of course, F is just the reciprocal of the 
expected Debye screening length (which diverges when p ~ 0). However, 
Stelrs expectation, not independently supported, that "F  is only weakly 
sensitive to the singularity in density fluctuation associated with ~c ~ 0 ''191 
seems tantamount to assuming the desired result, namely, that only the 
density fluctuations go critical. Then, since the density is a simple scalar 
field, standard, Ising-like behavior certainly becomes very plausible. 

Of course, one might well suspect that the statement: "In particular 
F4:0 at the critical point we are considering "~9) is correct, perhaps ~s2~ 
because of the strong + / -  symmetry; if so, it is surely significant. But, 
against this, one must recognize that at most well-understood critical 
points (and their associated RG fixed points) a principle of "infection by 
the critical singularities" applies to all thermodynamic functions, to trans- 
port coefficients, and to the underlying correlation functions. Typically, one 
finds that all correlation functions display slow, power-law decays even 
though certain combinations (such as, e.g., the charge-charge correlations) 
may decay more rapidly than others and hence may control only subdomi- 
nant singular behavior. Thus, in binary fluid-phase separation, the overall 
density and compressibility display singularities although the order 
parameter is the concentration difference. Furthermore, as Stell says after 
Eq. (5) of ref. 9, the internal energy U(p, T) is/can be wholly determined 
from hn(r), the charge correlation function. A temperature derivative of U 
yields the specific heat which (at p - p , . )  diverges as (T-T , . )  -= with 
ct = 0.11; but the specific heat can be expressed as an integral over the 
four-point ionic/charge correlation function, which must therefore certainly 
have some components decaying more slowly than any exponential. At very 



32 Fisher 

least, therefore, the assertion F , .>0  seems to require rather careful and 
detailed justification. 

If, contrary to the expectations, F does vanish at the critical point 
itself, Stell's line of argument could survive if the charge correlation 
function hD(r) decayed sufficiently rapidly, specifically, faster than 1/r ~ +7 
(d=3) ,  which characterizes the density correlation function hs(r). 
However, the behavior of the charge correlation function is restricted by 
the Stillinger-Lovett sum rules, 157~ which should be expected to hold 
everywhere in the single-phase regions away from criticality and, by 
continuity, even at the critical point itself. ~82~ These rules imply that 
both S ho(r)dr  and S r2ho(r)dr remain finite at criticality (with, in fact, 
well-defined negative values157~). Now if ho(r) decays monotonically for 
large r, this would mean that ho(r) must decay more rapidly than 1/r 5. In 
other words, if we write 

Iho(r)l ~ 1/r I + "q (A.4) 

then we could conclude tlq >1 4 >> q, which would satisfy SteWs desiderata 
sufficiently well. Unfortunately, however, it is possible, if not in fact 
likely, 122"34"59~ that ho(r ) displays an oscillatory decay as r--* ~ .  If, for 
example, one thus supposes 

ho(r )=J(s inkor ) / r  1+'~ (d=3)  (A.5) 

with only the restriction 0 < qq < 3, it is not hard to verify that both the 
Stillinger-Lovett sum rules can be satisfied however small %. [In fact one 
requires, not surprisingly, ko = K(7",., p,.), up to factors of order unity, since 
the second sum rule entails the inverse Debye length x.] This example 
hence demonstrates that the sum rules do not provide sufficient power to 
ensure that ho(r) decays harmlessly fast at criticality. If one had qq~<q, 
then SteWs arguments would certainly fail. But even if one had instead 
q~>q, the presence of a slow, oscillatory critical-point decay like (A.5) 
would suggest quite strongly that the corresponding renormalization-group 
fixed point was not of standard Ising character (although it is possible, 
in principle, that qq could be identified with some known, marginal or 
irrelevant Ising critical operator). 

Other queries about Stell's discussion concern the cluster-sum 
representations of the functional R[h(-)],  which are essentially pertur- 
bative expansions entailing powers of the density p. As such they are likely 
to fail at the critical point or, more concretely, when r/~ is small (even if 
p,. is small); but Stell seemingly assumes some validity remains in the 
scaling region: see ref. 9, Eq. (8). At best this is hard to assess. 

To explain a related issue, recall that the presence of the long-range 
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Coulombic forces causes the usual density (or virial) expansions to fail 
even at low densities since (for d =  3) the Debye-Hiickel limiting laws yield 
a p3/2 power. Of course, this singular behavior can be accommodated by a 
resummation of graphical contributions, using screened h-bonds, e t c .  t29"3~ 

Nevertheless, the differences in behavior from a simple single-component 
fluid are drastic. Thus, while the comparison of perturbative functional 
representations might be quite satisfying if the ions interacted only via short- 
range couplings, it seems much less convincing when Coulombic forces are 
present. Furthermore, in the RPM, these are the only forces acting, so they 
alone must generate the effective density--density attractions which lead to 
phase separation, to criticality, and to large-scale fluctuations! 

If criticality in the RPM is truly Ising-like, the size of the critical 
region is still an open question which is not addressed by Stell here. As 
regards the appearance of classical coexistence curves in real electrolytes, 
however, he suggests [claim (b) above] that 1/r 4 effective ion-ion poten- 
tials might play a role. Certainly, attractive forces of this character should, 
since they correspond to c r= l  and d = 3  in (A.1), give rise to classical 
critical behavior for the thermodynamic quantities. It is important to note, 
however, that the scattering function at criticality should then vary, with 
wavenumber k =  Ikl as S o ( k ) ~  1/k "--~ with q =  1. ('19) This contrasts with 
the value t 7= 0 which characterizes standard classical or van der Waals 
behavior (and with q = 0 . 0 3  6 for lsing-like systems). That in turn implies, 
in consonance with the scaling relation ( 2 - r / ) v = y ,  that a correlation 
length exponent v=  1 should be seen (rather than the standard classical 
value v = 1/2). Significantly, that prediction does not accord with the recent 
scattering experiments on the Coulombic systems, t16'171 This scenario does 
not, therefore, appear realistic (although perhaps the various data sets 
should be reexamined to check if they could possibly be consistent with 
~=1) .  

On the other hand, Stell observes that in certain models (with dielec- 
tric "cavities" rather than standard hard spheres) an effective repulsive 1/r 4 
ion-ion potential may appear. If that is not overwhelmed by similar 
attractive terms, it would seem to suppress k = 0  critical fluctuations 
and, instead, lead to a charge-density-wave instability, reminiscent of 
Nabutovskii et al.'s scenario: see Figs. 3 and 4. No experimental evidence 
for such behavior is known. 

Theoretically, either sign of a l / r  4 effective ion-ion potential seems 
questionable. While undoubtedly such a form may appear in a zero-density 
limit, it seems likely (depending on the model details, which, physically, 
should not be too "rigid") that the presence of free ions at nonzero density 
would always screen this effective potential in the same way that the bare 
1/r electrostatic potential is screened by the Debye-Hiickei factor e --rr 

822/75/1-2-3 
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Certainly this issue would need to be addressed before such 1/r 4 terms or, 
in Four ie r  space, Ikl terms were seriously invoked.  Indeed, recent calcula- 
tions 183~ of the interact ion between two charged dielectric spheres in an 
ionic medium indicate that  the "bare"  I /r  4 term is s t rongly screened, 
leaving only a cont r ibut ion  e-2rr / r  2. 
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